- Mucool - Linac area development - Relief valve calculations

HYDRONGEN RELIEF VALVE SIZING FOR THE MUCOOL LH2 ABSORBER

Relief Valve for the main hydrogen abs (6.87 liter)

Calculation of the relief flow capacity		
CGA S-1.3-1995 sizing of the primary relief valve as per paragraph 5.2.2		
Vessel MAWP (psig)	17.630 (P)	
Flow rating pressure (psia)	39.119 P	CGA p10
vi, specific volume of liquid relieved (ft^3/lb)	0.243 V	6.8 l=0.24 ft^3
C: cst of gas of vapor related to ratio of specific heat	357.000 C	
Z: compressibility factor a the temperature T and flow rating pressure P	1.000 Z	0.0085*PV M
M: molar weight of fluid	2.020 M	$O_{\alpha} = 0.0085^{\circ} IV \mid M \mid$
Temperature at maximum flow rate (R)	44.820	$Qa = \frac{1}{G} \sqrt{\frac{1}{G}}$
Relief valve flow capacity in SCFM of air - loss of insulation vacuum	3,217E-04	C VZ
F (correction factor for heat transfer)	1.000 F	
Gu, gaz factor for ininsulated container	45.800 Gu	
Mean of absorber surface area (in+out) (square feet)	1.978 A	$O = F * G *uA^0.8$
Relief valve flow capacity in SCFM of air - fire case	80.13	~
V (SCFM)	80.126	$W = \frac{M * V}{6.2}$
M (hydrogen)	2.020	0.2
W, flow capacity (lbs/hr)	25.6	
Calculation of the relief valve area		
W (lbs/hr.)	25.610	
V (SCFM)	80.126	
M (hydrogen)	2.020	
Temperature at maximum flow rate (R)	44.820	
Z (-)	1	
C (hydrogen)	357.000	
Kd, coeff. of discharge	0.9575	$A = \frac{W\sqrt{TZ}}{\sqrt{TZ}}$
Kb, capacity corrector factor	1	1/1
P1, upstream relief pressure (psia)	39.1	$CK_bK_dP_1\sqrt{M}$
Area, of the relief valve (in^2)	0.353	
		$V\sqrt{MTZ}$
		$A = \frac{V \sqrt{M T Z}}{V \sqrt{M T Z}}$
Avec of the valief value (in AO)	0.0245.02	$\left \begin{array}{ccc} 6.32C K_{d} K_{b} P_{1} \end{array} \right $
Area, of the relief valve (in^2)	9.021E-03	
Comparison with the absorber nozzle geometry		
dh2ct (in)	0.750	
The cooling tube area is (in^2)	0.442	
	U	

C/C for the worst case scenario (fire) the section of the current nozzle will be enough to evacuate the hydrogen flow